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ELECTROSTATIC WHISTLER MODE CONVERSION
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J.E. Maggs and G.J. Morales
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ABSTRACT

The mode conversion of an electrostatic whistler wave into a
Bohm-Gross mode at plasma resonance is analyzed fo a magnetized plasma
with a longitudinal density gradient (i.e., Vn0 x B - 0). It is found

that a whistler incident upon plasma resonance from inside the plasma
converts, without producing a reflected wave, into a short wavelength

Bohm-Gross mode that carries energy down the density gradient away
from resonance. The detailed structure of the electric field near the

resonance is found analytically. It is shown that the production of
the Bohm-Gross wave by mode conversion can be described by a model of
plasma resonance driven by a k-O electric field (i.e., the capacitor

plate model). The relation between the driver amplitude and the

amplitude of the incident whistler is derived.
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I. Introduction:

This paper analyzes the process of mode conversion of a long

wavelength electrostatic whistler wave into a short wavelength Bohm-Gross

mode. The whistler with frequency w, less than the electron

gyrofrequency, ( (i.e., w < 0), propagates from inside the plasma in the

direction of decreasing density to the plasma resonance point, cpe - W,

(cpe is the electron plasma frequency) where mode conversion occurs.

The electrostatic whistler waves considered here satisfy the

dispersion relation Ellkl1 /k2 + a k 2/k2 - 0, where in the cold plasma

limit E= 1 - pe 2 /W2 and e- 1 - p/( 2-jj). In a magnetized plasma

in which the density varies only along the magnetic field direction, z, as

illustrated in Fig. 1, the WKB wave number component along the magnetic

field, k I= k1 (-I/C11 )
1
/
2 , is a function of position. As the whistler wave

propagates towards lower densities so that cpe approaches w, cl approaches

zero and the parallel wave number becomes large. The inclusion of finite

temperature effects in the parallel dielectric component, El, then allows

the long wavelength whistler wave to couple to the short wavelength Bohm-

Gross mode near plasma resonance. The whistler wave propagating to plasma

resonance then mode converts into a short wavelength thermal mode that

propagates away from resonance towards decreasing density.

This particular mode conversion process is of general interest because

it represents a channel for converting wave energy into fast electrons.

The auroral ionosphere which is characterized by non-thermal levels of

6whistler waves and field-aligned electron distributions is a natural

plasma in which this process is likely to occur. In the auroral

ionosphere the density gradient in the background plasma is aligned nearly

along the magnetic field so that a model plasma with a field aligned

6 - v - e - _ f
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density gradient is appropriate for describing this environment. Whistler

mode conversion may occur naturally in the auroral ionosphere or be

stimulated artifically by launching waves from polar orbiting spacecraft.

The main purpose of this study is to determine analytically the

detailed structure of the electric fields involved in the mode conversion

process. This knowledge can then be used in later computations to

determine the changes in the electron distribution produced by

acceleration from the mode converted whistler wave.

In section II the equation governing the structure of the electric

potential is derived and an integral representation of the general

solutions is obtained. Asymptotic and series expressions for the short

wavelength solutions are obtained in section III while the properties of

,. the long wavelength solutions are examined in section IV. The mode

conversion process is treated in section V and the structure of the mode

converted electric field is determined in section VI. Conclusions are

presented in section VII.

II. Governing Equation:

The equation determining the structure of the electric potential in

the plasma is

V. . D - 0, (1)

where 4c is the electric potential and E the plasma dielectric tensor

operator. For the model plasma described here, the electric potential

amplitude, 0, varies only along the z-direction and 4 can be written in

the form

D(x,z,t) - O(z)exp( i(kI x wt)). (2)

Furthermore the plasma dielectric tensor components depend only upon z

-rl
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and in the cold plasma limit are: Exz - z- Eyz - zy - 0, xx - - C

-xy -i(i/L)(c -1) - "Eyx, and zz - E1

A plasma with a nonzero temperature supports modes which propagate

both along (Bohm-Gross modes) and perpendicular(Bernstein modes) to the

magnetic field. The Bohm-Gross modes arise from thermal corrections to

the parallel component of the cold plasma dielectric, EH , while the

Bernstein modes arise from thermal corrections to the perpendicular

component, c±. However, since we are considering whistler waves which

necessarily have w < 2 we need not consider coupling to Bernsteer modes.

In addition, we consider the case in which the electron gyroradius (v /0)

is much smaller than the perpendicular wave length so that thermal

corrections to the perpendicular dielectric component are negligible.

The lowest order thermal corrections to the parallel

component of the plasma dielectric cause it to become a differential

operator,

E11 - 1 - p 2 + I V2 d- , (3)
W 2 W2 dz2

where V is the thermal velocity, .(2T/m), and wp is the electron

plasma frequency which, here, is a function of z. The factor -y has the

value three since the electron motion is essentially one-dimensional. The

*parallel wave number usually appearing in the Bohm-Gross dispersion

relation has been replaced by the operator, -i d/dz, because the plasma

is nonuniform in the z-direction.

* Since the mode conversion process occurs in the immediate vicinity of

plasma resonance we make the approximation that the density varies

linearly along the magnetic field with scale length, L, the density scale

length at plasma resonance. The plasma frequency can then be written as

K. % -,
N% %
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Wpe 2/W- - z/L 1 - (4)

where is the dimensionless position variable, z/L. Since the number

density in the plasma is always positive, p must be restricted to the

_' regime less than unity in order to model a physical plasma. Using (4)
'A

the perpendicular and parallel plasma dielectric components become,

- £ = ( Y2 )/(l-Y2 ) ; = + f C d2  (5)

,-'. where Y 0/w and E
2 

- 7V 2/(W2 L2 ). Using (2) and (5) in (1) then

results in,
E 2(4) + ?.(2) + 0(l) + (;2 - - 0 (6)

(A, which determines the spatial structure of the electric potential.

" •Equation (6) has the same form as the equation analyzed by Maggs, et. al.

" - (1984) except for the sign of the term proportional to 0. The sign

* .[. difference arises because here w < 0, while the earlier work treated the

case w > Q. In (6) the parameters i1 and '62 depend upon the perpendicular

wave number,

32 k k L 2 (7)- 2 - i ' I fi Y  P2' (7)

2 2 -1

and the notation O(J) denotes the jth derivative with respect to

* The parameters Pi and 022 are real and positive since the

electrostatic mode is in the whistler band and w < 0 so that Y > 1. The

parameter u has the value unity for a plasma, but we consider general

9." values of a in the mathematical analysis of Eq. (6) because this procedure

is necessary to obtain the structure of the electric field in the vicinity

A, . of plasma resonance, as pointed out by Rabenstein (1958) in his classic

paper on mode conversion. The parameter 2 - 7V2/(co 2L2 ) is the square of

A,, i'b p '~. W I~. '.
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the ratio of the Debye length at plasma resonance (i.e. , - , or w - 0)
pe

to the density scale length, and is here taken to be a small parameter.

If C2 is set equal to zero a second order differential equation,

referred to as the reduced equation, is obtained from (6). The reduced

equation determines the potential structure in the cold plasma limit.

Transforming the independent variable of the reduced equation to - 22

and substituting the function 4 - u exp(- /2) results in

'u(2) + (a - )U(I ) -(a/2 - i 0 )u - 0 , (8)

where 80 - P 1/(26 2 ). Equation (8) has the form of Kummer's differential

equation, and lincarly independent solutions can be written as combinations

of the Kummer functions M(a.,_a;i ) and U(a.,a;i ), where a. - a/2 - if0

4(Slater, 1970).

In addition to the two independent solutions to the reduced equation,

cnother pair of basic solutions exist which depend upon 02 being finite

(i.e., £2
7 0). This solution pair is related to the Bohm-Gross modes and

thus has relatively short wave length in comparison with the solutions of

the reduced equation. The equation describing the pure thermal modes can

be obtained from (6) by setting 02 ( and hence Pi ) equal to zero. Doing

this, changing the independent variable to q - E-2/3g, and writing u(q)

instead of 0(;.) gives, after integration,

u( 3 ) + nu(l) + (a - l)u - constant. (9)

For the case a - 1, Eq. (9) becomes the inhomogeneous (i.e., driven)

Airy equation for u (I ) , which is proportional to the electric field.

The short wave length solutions are thus related to Airy functions

and the integrals of Airy functions.

Since the coefficients of the derivatives in (6) are all constant or

linear functions of the independent variable W, general solutions can be

rj
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obtained in integral form by using the Laplace transform technique

(Coddington and Levinson, 1955). The solutions then have the form,

S4) ) s? exp s -J t dtj , (10)
P(s) P(t)

where P(s) and Q(s) are polynomials obtained from (6) by replacing O(n)

by (-s)n to obtain an expression of the form, P(s); + Q(s). Using this

procedure we find that P(s) - s2 + '22 and Q(s) - E2s 4 - as - ' The

contours denoted by C in (10) are chosen so that the bilinear concomitant,

e -s exp( -fs Q(t) dt, (11)
P(t)

which is essentially the boundary term obtained after an integration by

parts, is zero at the end points of the contour. For the problem under

consideration the solutions have the form

S(9) - (s + ip 2 ) (s ip 2 )" exp( -(. 2s3 /3 + sj)) ds, (12)

where,

= - + ic2p 2  , (13.a)

a+ - a/2 - 1 + if8 a- - a/2 -1 - iB , (13.b)

6 - 00 + i(E) 2 
3 )/2 P o - 61/(2P 2 ), (13.c)

The contours in the integral representation (12) must be chosen so that

the condition

(s i 2) a/2-i(s + i)' /2+ip exp( -((2S3/3 + si)) - 0 , (14)

% % %)
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is satisfied at the end points.

Since a+ and a- are not integers, the points s - if2 and s - -if2 in

%the complex s-plane are branch points. Therefore, to obtain analytic

solutions using the integral representation it is necessary to cut the

integration plane with branch lines. Since, in general, a+ a. the two

branch points can not be connected by a single branch cut. Thus the

integration plane is cut with two branch lines extending from the branch

points to infinity parallel to the real axis as shown in Fig. 2. In the

cut plane the term (s-io2) - is single valued for 2mr < 0- < 2w + 2mr,

where 0. denotes the argument of s-ia2 and m is integer. The term

(s+2)a is single valued for 2nr - r < 0+ < r + 2nn, where 0+ denotes

* the argument of s+ia2 and n is integer.

Equation (14) can be satisfied by contours that end at the points

s - io2 or s - -i 2 , provided that Re(a/2 ± io) > 0, or by contours that

proceed to infinity along rays such that exp(-2S3 /3) vanishes. It is

convenient to define two basic classes of solutions with members denoted

by A. and B. The solutions A. are obtained from the integral

representation (12) by using contours that begin and end at infinity. The

solutions B. are obtained by using contours with at least one end point at.' J

s - i02  Some of these contours are illustrated in Fig. 2. The

solutions B2, B3, and B0 are closely related to the solutions of the

reduced equation given in (8). Asymptotically B2 and B3 represent long

wavelRILgth propagating waves. The solution A is related to the E S 0

class of solutions which satisfy Eq. (9). Asymptotically A1 represents a

short wavelength propagating wave.

I



-9-

II'-. ahort Wave Length Solutions:

In this section we investigate the behavior of the solutions that

asymptotically correspond to the short wavelength solutions of Eq. (9).

We evaluate the leading term of the asymptotic series for the solutions A.

which is useful for determining their behavior at large g. We then obtain

a series representation for A. which can be used to evaluate theseJ

solutions for small 3. The asymptotic expression is needed to identify

the thermal mode produced in the mode conversion process while the series

expansion is needed to evaluate the electric field structure near the

origin (i.e., plasma resonance).

The contours describing the solutions A. have both end points atJ

infinity. An example of the contour for the solution labeled A1 is shown

in Fig. 2. In order for the condition (14) to be satisfied at large

IsI, the term e2 s /3 must have a positive real part, i.e.

27T(2-j)/3 -7r/6 < arg(s) < ir/6 + 2ir(2-j)/3 . (15)

The integer j in (15) labels the open sector in the s-plane of angular

width n/3 centered about the angle 2w/ 3 for j-l, 0 for j-2 , and -27r/3 for

j-3. The contour for the function A. has its end points at infinity inJ

the two sectors other than sector j. For example, the contour for the

function A1 proceeds to infinity in the sectors labeled by j - 2 and 3.

O In order to study the properties of the functions A. it is

convenient to make the transformation of variables

a -
2
/3s C-a/3j 0 - ir2 / 3 32  (16)

*D With this transformation, the integral representation (12) has the form

4 A.(,) r-2( a-l)/3 (a-o0 ) (o+o) + exp( -(C 3 /3 + or)) do (17)

C(A.)

" O.

%7.'is . . . . . tbt ''".".""" ))3''.)"' Y""€ - ? ' ' :*' *¢¢ .,,. Z ~ 4;-";: '. ,
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where C(A.) is the image of the contour for A. under the transformationJ J

(16).

We first investigate the asymptotic properties of the functions A. (T)

by assuming that c2 is small and the magnitude of ; is large,

specifically, I1 >> E2f22 The saddle point method of integration can be

used to evaluate (17) under these asumptions. Defining f(o) - C3/3 + cn,

the saddle points are determined by the condition f'(a) - 0. Thus the

integrand of (17) has two saddle points at a - +inl / 2 . The condition of

large I.I insures that a >> o , i.e., the saddle points are far removed

"- - from the singularities in the inLegrand of (17). Demanding that a saddle

*-- point lie between the Stokes lines (which are located at arg(s) - 0, 2w/3,

." and 4ir/3) places the following restrictions on the argument ranges of the

functions A.

2w(2-j)/3 + 2w/3 < arg(a ) < 4w/3 + 2w(2-j)/3 (18)

For the saddle point a - i1l/2 (18) gives the argument ranges

47r(2-j)/3 + wr/3 < 6 < 5wr/3 + 4ir(2-j)/3 ,(19.a)

while the saddle point a - -in l/2 gives the argument ranges

4w(2-j)/3 - 5n/3 < 0 < -ir/3 + 4ir(2-j)/3 , (19.b)

where 0 - arg(;-). The argument ranges for the two values of the saddle

* point are illustrated in Fig. 3.

The direction of the path of steepest descents through the saddle
X2< - f"( ,2/

point is obtained by assuming f(a) has the form, x - (as)(a-Cs)2/2

. where x2 is real and positive (i.e., has argument zero). The sign of the

leading term in the saddle point method of integration is determined by

choosing the sign of x - +(a-ao)(f"(Cs) 1 2 ) such that x is positive along

the direction of the contour of integration. Thus, if the contour of

6. %'"

*8% ,,
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integration passes through the saddle point in the same (opposite)

direction as the path of steepest descents the plus (minus) sign is

chosen. Since f"(os)/2 - as , the positive direction of the path of

steepest descents has arg(a-a ) - -arg((in/2)1/2)/2 for the saddle point

. - i n 1/ 2  a n d -rg ( a -a -a r g ((-i 1 / 2 ) 1 2) / 2 f o r a - -ir7 '1 2  T h e l e a d i n gs

term in the asymptotic expression for A (,) then gives, for the saddle point

A . = ( -)J p. , (i, 7 1/2)a -5/2  c-2 (a 'l)/3 e , (20 .a )
-2 s

where P 2  P3 - 1, and p1 - e-i 2 ,a+ The factor p. in (20) arises

because the saddle point for the solution A lies in the Riemann sheet

where the argument of the term (a-ao) + is 2w larger than in the

* principal sheet. For the saddle point a - "i/

A .(, ) ( _) j + l P . / i ( i , 1 / 2 ) a .5 / 2 z -2 ( l ) / 3A. () - (-)j p e(20.b)

In (20.a) and (20.b) the variable g is defined as 23/2/3

The asymptotic behavior of A. as given by (20.a) and (20.b) contains

the exponential term, exp(±i ), where C -2 1- :3/2 . When is imaginary,
3

the argument of the exponential term (i.e., ±i ) is purely real and A. is

either spatially growing or decaying. For example, with arg(?)-w/3,

i E-11I13/2 and , as illustrated in Fig. 3, A2, which is asymptotically
3

proportional to exp(-i ) as given by (20.a), represents a spatially growing

* function while (20.b) indicates A1 represents a spatially decaying

function.

When the variable is real the exponential term in (20.a,b) is

S °" oscillatory and A. represents a propagating wave. The assumed temporal

dependence exp(-iwt) determines whether the phase velocity of the wave is

positive or negative. For example, with arg -0, is real and positive

and, from (19.a) and (20.a), we see that A3 is defined for arg g - 0 and
.g, 3

1 I
, ".0.A .

.
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varies as exp(-i ), while (19.b) and (20.b) indicate A I is cefined for this

argument value but varies as exp(i ). The phase of A1 then varies as

( -wt) so that A1 asymptotically represents a positive phase velocity wave

(i.e., a wave propagating left to right) for arg g- - 0. Similarly A 3 ,

for arg = 0, represents a right to left propagating, or negative phase

velocity, wave. The asymptotic behavior of A. at various values of theJ

argument of ;- is indicated in Fig. 3.

The solutions A. can be evaluated for small values of the independentJ

variable ; (i.e., near plasma resonance) by deriving a series expression

from the integral representation (17). This can be accomplished by

expanding the term (a-ao) a(a+ao)a+ in the integrand of (17) in a series

in a0 /a and integrating term by term. Carrying out this procedure (the

details of the calculation are given in Appendix I) gives the following

series representation of A. , valid in the finite ;-plane,J
c2(a-l)/3 k

Aj(7) Pi cm (°mc'k lj(a-m,k) ' , (21)
k m k!

where

I.(a-m,k) - 2ri exp(iri(l-p)(7-2j)) / (3P r(p)) (22)

and p - (4-a-m-k)/3. The phase factors pj are the same as given

previously for the asymptotic expressions (20.a,b). The restricted

argument ranges given in (19.a,b) that apply to the asymptotic expressions

(20.a,b) do not apply to the series expression (21) which is valid for all

values of arg(n). Since a0 - 2/s2, it can be assumed, for a plasma with

a gentle density gradient, to be small because 2 4 1. With a o small, A.

can be approximated from (21) by using only the m - 0 term.

I,
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IV. Long Wave Length Solutions:

In this section we obtain approximate expressions for the solutions B.

and B0 in terms of the well known Kummer functions M and U (Slater, 1970).

The leading term of these approximations is related to the cold plasma

electrostatic whistler. The expressions obtained here are used to

identify the solutions that asymptotically represent whistler waves in the

mode conversion solution given in Sec. V.

The contours for the solutions B. and B0 have at least one end point

at the branch point located at s - -if2. To obtain an expression for B.

and B0 in terms of familiar functions it is useful to express the

integrand of (12) as a Taylor series in E
2 ,

Bj( 2 ) - Bj(0) + C2 8a Bj(0) + ... , (23)

where B.(0) is obtained by setting C2 - 0 in (12),
J

B (0) - j (s + i62 )a+(s i 2)a- exp(-s?) ds , (24)
, - C(B. )

where a+ is a+ evaluated at C2 _ 0 , namely

a+ - a/2 ± iflo -1 . (25)

In (23) and (24) j can have the values 0, 1, 2, or 3. Since B.(0) is

* obtained by setting E2 _ 0 it is clearly a solution of the reduced

equation (i.e., (6) with 0 - 0). The C2 expansion given in (23) thus

represents successive thermal corrections to the cold plasma whistler

4mode.

The solution B0 is obtained from the contour which starts at s - 20y

circles the point s - if2 in the counter-clockwise direction and returns

to the point s - -if2, as shown in Fig. 2. Changing the variable of4
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integration in (24) to s ip gives

Bo(O) = (i)a ( +)dp (p-1) (p+l) a+ exp(-iP02'). (26)

" In (26) the limits of integration with the notation (1+) denotes that the

contour starts at p - -1, circles the point p - 1 in the counter-clockwise

direction, and returns to the starting point p -1. Since the integral

representation for the Kummer function M(b,c;x) for Re(b) > 0 is (Erdelyi,

1953),
' " [~(1+)eXt tb -1 (-) c -b -l d (7

M(b,c;x) - r(c)r(b-c+l) e t (t- b dt , (27)
2wir(b) 0

SB 0 can be obtained in terms of M(a,b;x) by changing the variable of

integration in (26) to t - (p+l)/2, giving

a-l e {p2;r (l+)ta a+

0(0) - (2iP2  2 t-)-a+ep-i2,6 2 gt) dt. (28)
/" --0

Choosing b - a +1 - a/2 + ifo - a- a and c - a in (27) then gives,

B0 (0) - (2i 2 )a'I e
iP29 27ri r(a-a) M(a-a,a;-2if 2 ). (29)

r()r(l-a)

where a - a/2 - iPo - a- + 1. The expression (29) is valid for all

* values of arg(p). The higher order corrections to B0 in the expansion

(23) can be shown to depend upon M and its derivatives with respect to #0

(Maggs, et.al., 1984), but we do not attempt this here.

S The contour for the solution Bj(0) extends from s - -iP2 to infinity

in the sector labeled 'j' in Figure 1, passing above the point s - i2

V. At large Is) the integrand in (24) varies as sa- 2 e- s
. In order for the

integrand to be bounded along the contour for a > 1, it is necessary to

_. *-..
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4

require that ; be nonzero, i.e. 1I t 1;01 > 0 where p0 is arbitrary but

small and non zero. Thus for the solutions B. (j - 1,2,3) the expansion

(23) is valid only for nonzero values of g. This feature is evident in the

Kummer function U(b,c;x) which is singular at the origin for Re(c) 1.

In addition to the requirement I4I ! I,;I, the integrand in (24) is

bounded only when Re(sp) > 0, i.e.,

-7r/2 < arg(sp) < w/2 (30)

The requirement (30) combined with (15) gives the argument ranges over

which the functions B.(0) are defined by the integral representation (24),

2w(j-2)/3 - 2n/3 < arg(P) < 2r/3 + 2w(j-2)/3 (31)

The argument ranges given by (31) are compared to those for the functions

7" A. as defined by (19.ab) in Figure 4. Using the transformation

" s - 2i 2 (t+1/2) , (32)

in (24) results in

S - e 2 (+l)a+ exp(-2ip 2pt) dt , (33)

where the contour in (33) extends to infinity along a ray with

arg(t) - 0.

The integral representation of the Kummer function U(b,c;x)

is (Erdelyi, 1953)

U(b,c;x) - r(l-b) e-i b f(0+) tb-l (l+t)c- b-l exp(-xt) dt. (34)
21ri coe i

In (34) the contour starts at infinity with arg(t) - 0, circles the

origin in the counter-clockwise direction and returns to infinity with

arg(t) - 0 + 2r. The integral in (34) can be divided into three separate

integrals,

4e0 k%
'. M .N
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"%: [(0+) -- f1 +(+) e i O+ 2 7

+ f(0+) + oe~c+~
fj. coeiO f ce i 8 0-

(35)

- II + 12 + 13

The integral 13 on the right hand side of (35) is like I except for the

direction along the contour and the argument of the variable of

integration. The argument of the variable of integration in 13 is 21r

larger than in 1 so that the term tb-l in 1 is exp(i2rp)times the sameII1 13 ep(2pie

term in I . Since the argument difference of 2ff does not alter the other

terms in the integrand of (34), 13 is simply -exp(i2frp) times Il The

integral 12 in (35) can be related to e 2 M(a-aa;-2i,2 ?) by changing

the variable of integration from t to t - t+l. Applying (35) to (33) and

*using (34) then gives

%: B (0) - (2i 2)e-
1 ?r e i 2 f U(a,a;2i 2 )
sin(ra)r(l-a) - e -iraT

r (a)a 2 f

(36)

where a - a/2 - io. Even though the subscript j does not appear

explicitly on the right hand side of (36) it is present implicitly

because of the argument range restrictions given by (31). Since

U(a,a;2i 2F) is a multivalued function the asymptotic form for B. , as

obtained from (36), depends upon the value of arg(P) and thus on the

• value of j.

Equation (36) can be used to obtain asymptotic expressions for Bj

that can be related directly to whistler waves in the cold plasma limit

6. when the physical value unity is used for the parameter a (i.e. a-1).

For example, defining w - 2i,82 T and taking arg(p)- 0 gives arg(w) w/2
iti i

and for this argument value the asymptotic values of U(a,l;w) and

IM(a,l;w) are

gqA
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U(al;w) - w-a (37.a)

-'.\'." M(a,I;w) - w-a eiwa + wa-l ew (37.b)
r(l-a) F(a)

- From (31) and Figure 4 we see that the argument range of B contains
2

arg Z - 0 so that using (37.a,b) in (36) gives

B2 (0) - -r(l-a) e-ira wa -l eW/ 2  (38)

With the chosen time dependence exp(-iwt), the phase of B2  as given by

(38), varies as 2P2 ?--Wt so that B2 is a left to right traveling wave for

arg 0 0, because for w < 0 (i.e., electrostatic whistlers) the phase

velocity and group velocity are in the same direction (forward wave).

As a further example, consider the asymptotic behavior of B. at

0 arg g - r, i.e. arg w - 31r/2. The asymptotic valueg of U(a,l;w) and

M(a,l;w) at arg(w) - 3r/2 are,

U(a,l;w) - wa _ 2,i e-iia w-a . 2ri wa-l ew , (39.a)
r(a)r(l-a) T(a)r(a)

M(a,l;w) - e-ira w-a + wa -l ew . (39.b)
r(l-a) r(a)

where the principal branch of the multivalued function U(a,l;w) is taken

as -n < arg(w) _< r. From (31) we recognize that the argument range of B3

contains the value arg 9 = r so that using (39.a,b) in (36) gives

B3 (0) - -r(l-a) wa -l el-a eW/2  (40)

Since the argument of ; is r, the phase of B3 varies as P21;l+wt. For

constant phase then, IpI decreases as t increases, and since g is negative

B 3 represents a left to right propagating wave for arg(p)- r. The

direction of propagation for B. with a - 1 is shown for selected values

of arg P in Fig. 4.

The asymptotic expressions (38) and (40) are consistent with the WKB

Ot
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form of the whistler in the cold plasma limit. Using Eq. (6) with C2 - 0

and the fact that the WKB solutions vary as exp (if ki1d ), gives the WKB

Idispersion relation,
11l + iak 1 +(.22 W- i -0 (41)

where the derivative of k has been assumed negligible. From (41) we

obtain

k 1  i(a/2 + ip0 )/- + P2 (42)

where terms of order I/? 2 have been ignored since ; is assumed large.

Using (42) then gives

ij k11 d0 - -(a-a)lng + ip2  , (43)

so that the WKB solutions are proportional to (?)a' exp(iP2g). For

a= this behavior is the same as obtained in (38) and (40) for B2

and B 3.

The functions B.(0) (with j - 1,2,3) are singular at the origin

because of the singularity in the function U(a,a;2i, 2 ;). For a - 1 the

function U diverges as lng as p approaches zero. Thus near the origin the

,2 expansion of (23) is not useful for evaluating B. However, the

behavior of the solutions B. near the origin can be determined byJ

expressing them in terms of the solutions B0 and Aj as discussed in

section VI.
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V. Mode Conversion:

In this section we consider the case of an electrostatic wave

propagating in the whistler band incident upon plasma resonance from

inside the plasma. In the whistler band the phase velocity is in the same

A- direction as the group velocity (i.e., the whistler is a forward wave) so

that, in the model plasma, the incident whistler is a positive phase

velocity wave approaching the origin along the negative real ?-axis. Thus

we look for a solution at negative values of 9, i.e. arg(p) - r which

contains a part corresponding to a long wavelength incident wave (i.e.,

propagating from left to right) together, perhaps, with a reflected wave.

1%
On the other side of plasma resonance (i.e., arg(p)-0) the solution must

be bounded at infinity and be consistent with energy transport away from

the origin. Thus for arg ? - 0 the solution must contain left to right

propagating waves only.

From the discussion in section IV, a candidate solution for the

incident wave is B since it is long wavelength and propagates left to
3

right for arg P -. From Fig. 4 we see, however, that the argument

range of B does not contain arg p - 0 so that we can not directly

determine the properties of B 3 on the other side of plasma resonance. To,3

evaluate B3 for arg p - 0 we must analytically continue B into this

argument regime. Refering to Fig. 2 we note that the cut integration

plane is free from singularities in the regions between the contours

defining the solutions B3, B 2 and A The solution B3 can then be

related to the solutions B2 and A1 by extending the contour for B3 to

infinity in sector 2 and applying Cauchy's Theorem. This procedure yields

the expression

B, - B, e-i 2ra - A, , (44)

4,

r p
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whirL' analytically continues B3 into the desired argument range since as

% shown in Fig. 4 the argument ranges of B 2 and A both contain arg(g) - 0.

The factor e-i 2 ra - in (44) occurs because part of the distorted contour

for B3 (the dashed portion in Fig. 2) lies on the Riemann sheet for which

the phase of the term (a-ao)a - in (17) is 21 less than it is on the

principal sheet in which the defining contour for A1 lies. The fact that

the analytic continuation involves the short wave length mode represented

by A1 means that mode conversion must occur. Thus the mathematical

procedure of analytic continuation corresponds to the physical process of

mode conversion.

B3 analytically continues into a physically acceptable solution

* because, for arg(?)-O, (38) indicates that asymptotically (J j- , arg(p)-0)

B2 corresponds to a left to right propagating wave, while, from Fig. 3, we

note that A also corresponds to a left to right propagating wave at arg
1

- . Thus both waves transport energy away from plasma resonance. We

find then that a left-to-right propagating, purely long wavelength mode

(represented by B3) incident upon plasma reson,.nce from inside the plasma

gives rise to both a long wave length transmitted wave (represented by B2 )

and a short wave length transmitted wave (represented by A1 ). The

transmission coefficient for the cold wave is e-ira, or iefia. The

* reflection coefficient is zero, i.e., there is no reflected wave. These

results are the same as obtained by Ba os, et. al. (1986), who considered

only the purely cold case represented by the reduced equation (i.e., (6)

Uwith r2 - 0).

In obtaining the asymptotic expressions for B3' B and A we have

assumed that the magnitude of the function arguments is large. While this

assumption is consistent with the model plasma for negative values of p,

,-q

0%
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it is not for positive values of g when considering the function B2

This is because the region ; > 1 corresponds to a fictitious negative

value of plasma density arising from the approximation, 1 - -p2 - z/L,

in the model. Thus while the argument of the function Al, - 2g3/2/3

can be assumed large for values of g < 1 because C2 g 1, the argument of

the function B2 can not. However, an appropriate expression for the

function B 2 can be obtained by assuming that the magnitude of the

coefficient a in the Kummer functions U(a,a;w) and M(a,a;w) is large in

comparison to a and the magnitude of the indenrent variable w. In terms of

physical parameters this requirement becomes,

I; 1 4 P11&62 2) = Q21W (45)

Since, for waves propagating in the whistler band, w < Q the requirement

(45) can be satisfied for values of 3 with ;o < P < 1 , where again po is

arbitrary but small and non zero. Then, for arg(p) - 0 and large lal,

U(a,l~w) and M(a,l;w) have the asymptotic behavior (Slater, 1970)

e w/2 U(a,l;w) - r(l-a)[cos(wa)Jo(iX) - sin(ira)Yo(iX)] , (46.a)

e-w/ 2 M(a,l;w) - J 0 (ix) , (46.b)

where J0 and Yo are zero order Bessel functions of the first and second

kind, respectively, and X - 2(200P 2 )11 2. Using (46.a,b) in (36) we then

obtain

B2 (0) - iw[Jo(iX) + iYo(ix) ] - 2Ko(X) , (47)

where K o is the modified Bessel function. From (47) we see that, for

arg(;) - 0, B2 represents a decaying function for increasing IgI.

Thus, a long wavelength whistler incident upon plasma resonance from

inside the plasma gives rise, beyond plasma resonance, to a short wavelength

Bohm-Gross mode propagating towards decreasing density and a decaying long

wavelength structure. No energy is reflected back into the plasma from

%0%
-Zr-
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the plasma resonance layer.
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VI. Electric Field Structure Near Plasma Resonance

Having established that a whistler wave incident upon plasma

resonance converts, without reflection, into a short wavelength thermal

mode, we now determine the structure of the electric field near plasma

resonance arising from the mode conversion process. We then relate the

amplitude of the field at the origin to the asymptotic amplitude of the

incident whistler wave.

The structure of the electric field of the incident cold mode in

the vicinity of plasma resonance can not be obtained from expressions

such as (23) because the function B3(0) is singular at the origin. The

structure can be found, however, by relating the solution B3 to the

solutions A. and B0 which are not singular at the origin. In addition,0

this relation gives an expression for B valid for all values of arg(-)
3

when the series expressions for the functions A. are used.J

The relation useful for evaluating the behavior of B3 near the origin

is established by deforming the contours which define the solutions B3 and

A 2 . As shown in Fig. 5.a, B3 can be related to BI, A3 and AI by extending

the contour defining B3 to infinity in sectors 1 and 2. This procedure is

permitted because the integrand in (12), the general expression for the

solutions, is analytic in the cut s-plane over the region of distortion.

Then by Cauchy's theorem we obtain the relation

B'BB - ei 2 a -  (48)3 1 3 1 (8

The factor e-i 2w a - multiplying A arises because the argument of the term
I

(s - io2 )- in (12) is 2w less than over the basic defining contour for A1

shown in Fig. 2. Likewise, the contour defining A2 can be pulled into the

point s - -iB2 to coincide with the contours for B1 and the combination

ei2na+ [ei 2wa - B3 + B0 ] as shown in Fig. 5.b, giving

4%
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A 2  B 1 + ei 2 a+ [ei 2 ra - B3 + B] . (49)

The relations (48) and (49) can then be combined to give

B3() 3 [ei 2 1r - 1I-1( A2 + e
-i 2 a - A1 + A3 - ei2na+ B 0 ). (50)

The expression (50) for B3(,-) is valid for all arg(g-) when the series

expressions (21) for A. are used, so that (50) represents the analytic

continuation of B3 into all arg(p) values for the finite ;.-plane.

Note from (50) that the term outside the braces diverges as a

approaches integer values, so that it must be the case

Lim ( A 2 + e-i 2wa - A1 + A3 - ei2 na+ B0 ) -0. (51)

Using L'Hopital's Rule to evaluate (50) we then obtain

B-3  1 [aA 2 + a(e-i2na-AI) + aaA 3 - c(ei2a+B0 )]1 1 ). (52)

Note that to obtain (52) it is necessary to treat a, the coefficient of the

first derivative term in (6), as a general parameter as was first pointed

out by Rabenstein (1958) in his extension of the work by Wasow (1953).

The function proportional to the electric field, B 3 P (where

denotes derivative with respect to argument), is given by

B' 1 ( 8aA 2 F + a (eAi2 3aA +, (53)
3' 27ri 1 aA 3

S where the term proportional to the derivative of B0 has been ignored in

smalerby facor f ~2/3
(53) because it is smaller, by a factor of , than the terms

proportional to the derivatives of the functions A. . Assuming that
J

. - ic2/30 2 4 1, the m - 0 term of the series expansion (21) can be used

0 2
to evaluate (53) to obtain B P in terms of familiar functions,

3

B 3 = ir [ Gi(-r) + iAi(-7) ] (54)
3

. The details of this calculation are given in Appendix II. In (54), Gi(-n)

"*VI.

,,
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denotes a solution of the inhomogeneous, or driven, Airy equation

and Ai(-n) is a solution to the homogeneous Airy equation (Antosiewicz,

1970). The asymptotic form of the functions in (54) are

Ai(-n) - W-12N-14 sin( + 7r/4) (55.a)

and Gi(- 7) - -1 2 17
1
/
4 cos( + r/4) ff-117- 1  (55.b)

where - 2n3/2/3. From (55.ab) it is clear that the electric field

structure of the mode converted wave consists of a short scale length

wave propagating down the density gradient away from plasma resonance

together with a field that falls off slowly as 1/7.

The electric field amplitude at the origin can be related to the

asymptotic whistler amplitude by obtaining an approximation to Eq. (6)

S,valid near the origin for a 1 1. With a - 1, (6) can be integrated once

to obtain

C20 (3) + g(i) J (fi1 - ;fi 2
2 )0 d;_ + C (56)

where C is a constant of integration. Now consider the mode conversion

solution B3 which satisfies (56). Near the origin B3 (0), which is the

33*;. leading term in the c2 expansion of 3, is singular for small ., diverging

*as ln(,). For the purpose of estimating the relative magnitudes of the

terms in (56) for small k, B3 (and, thus 0) can be approximated by ln(;).

Since 0(l) is proportional to g-', k(l) is of order unity, while

C20(3) is proportional to C2/g 3. The terms on the left hand side of (56)

are then of order unity, or larger, for small k. On the other hand, the

integral term on the right hand side of (56) approaches zero. Evaluating

0' this term we find,

(i 2 )ln(;)dg - 0l( in( )-) -fi2
2( 2 n(?)-_/2)/2 (57)

Since kln(X) and 9 are continuous and have the limit zero as goes to

zero, the integral term on the right hand side of (56) can be made as

"J,
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small as desired by chosing small enough. Thus for < ;- where PO is

such that

,81 P°(ln(;°)-l) - 82
2 [o 2 (ln(po)-i/2)]/2 << Min(C,l) , (58)

(56) can be approximated by

C2 0(3) + go(l) - C (59)

By setting 0(l) - E, the z-component of the electric field, and using

z - ;L, (59) can be written in the form

y V 2  d2 E + z E - Eo  (60)

Wpe 2 dz2  L

Equation (60) describes plasma resonance driven by a constant electric

field of amplitude E0. Thus we interpret the constant C in (59) as an

effective external electric field strength at the origin, E0 , which

excites the Bohm-Gross mode. The solution to (59) is then

•( - Eo  " / 3  [Gi(-n) + iAi(-q)] (61)

Interpreting 4(I) as an approximation to the solution B3 '', i.e.,

-() ; -B3 where C is a constant of proportionality, we obtain

C a ? B3 _r -2/3 E0 [Gi(-q) + iAi(-n)] (62)

However, from (54) we have for small P (i.e., P < P0)

817 B 3  - B 3 -B [Gi(-n) + iAi(-q)] , (63)

from which we conclude that the proper choice of the constant C is

-E. and

E() _ -Eo 8- B3  (64)

Having used the behavior of B3 near the origin to find the constant of

proportionality between B3' and 0(l), we can now relate the field strength

E0 to the amplitude of the incident whistler wave. Since the electric

potential of the incident whistler wave is represented,.in the mode

conversion solution, by B3 for Ij- , arg(p)-w, we use the asymptotic form

43
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of B 3 and (64) to make this connection. Asymptotically a;- B 3  - B~ 3(0)

and from (40)

a?- B (0) ip2 r(l-a) ei~ra w-Gla)ew/2  (65)

so that

-E a~ B3  B r'l/2+ipB0) effo E0 w-(l-a)ew/
2 

. (66)

Since, as discussed in Sec. IV, w-(la)exp(w/2) represents the functional

form of the asymptotic whistler, the coefficient of this term on the right

hand side of (66) can be equated to the electric field amplitude of the

whistler wave, which we denote as P2 EW. using 1 r(1/2+i,6,)I 2 -

Jffcos~ro),we then obtain

1E01 - e "P [cosh(iwpo)]'' 2  EW (67)

Eq. (67) relates the asymptotic value of the whistler electric field to

the value of the driver electric field of Eq. (60). In terms of physical

quantities the parameter PO has the form

- 2co((2-c2)1/2kL.()

%.
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VII. Conclusions

This analytic study has identified a new mode conversion process that

can occur in magnetized plasmas having a longitudinal density gradient

(i.e., Vno x B - 0), as may apply in the auroral ionosphere and long

*mirror machines. It is demonstrated that an electrostatic whistler mode

with frequency w less than the electron gyrofrequency (i.e., W < 0)

I-., transfers all of its energy to a hot Bohm-Gross mode at that point in the

density profile where w - Cpe. The excited hot plasma mode propagates away

from plasma resonance in the direction of decreasing density and

eventually transfers its energy to background electrons. Thus the

mechanism described here provides a conceptual link between the presence

of large amplitude whistler wave activity and the generation of magnetic

field aligned fast electrons. Although no effort is devoted in the

present study to an evaluation of the quantitative consequences expected

for specific physical situations, this is a worthwhile project that requires

a separate survey.

Our major effort has aimed at providing an analytical description

of the mode conversion process and an evaluation of the structure of

the electric field excited at plasma resonance. The solutions of the

differential equation describing the mode conversion process are

divided into two categories. One category of solutions has short

wavelengths and is related to Bohm-Gross waves. These solutions do not

exist in the cold plasma limit. Expressions useful for evaluating the

asymptotic properties of these solutions are given in (20.a,b) while

the series expression given in (21) is useful for evaluating the

solutions near the origin. The second category of solutions is

characterized by long wavelengths and includes solutions that

orW0 e'
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asymptotically represent propagating electrostatic whistler waves. The

analytic expressions given in (29) and (36) in terms of Kummer

functions are useful for evaluating these solutions away from the

origin. The long wavelength solutions are evaluated near the origin by

relating them to the series expressions of the short wavelength

solutions. The physical process of mode conversion is shown to

correspond to the mathematical procedure of analytic continuation which

relates a long wavelength solution defined over a given argument range

to a combination of short and long wavelength solutions defined over a

separate argument range.

Although the details of the analysis presented are somewhat involved,

they point to a powerful simplification in describing the mode conversion

process. It is shown rigorously that at plasma resonance the excitation

of the Bohm-Gross mode results as if it were driven by a uniform capacitor

plate electric field, E0 , as has been invoked previously in other resonant

excitation problems (Morales and Lee, 1974 ; Shoucri and Kuehl, 1980).

The analytic expression given in Eq. (67) relates the effective pump field

E0 to the asymptotic whistler amplitude EW, providing the connection

needed to apply the capacitor plate model to an incident wave problem.

The plasma properties appear through the single parameter fl -

k L 2 /[ 2w(f 2 _W2 ) 1 / 2
]

Finally, we note that the analysis presented here complements and

extends a previous study (Maggs, et.al., 1984) devoted to the properties

of resonant excitation of a plasma driven externally at frequencies larger

than the electron gyrofrequency (i.e., w > 0).

.-.
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Appendix I:

In this appendix a series representation of the solutions Aj is

derived by expanding the integrand of (17) in a series in a0/i and

integrating term by term. Writing

(a-ao)c (a+ao)a+ - a-2 f cm (ao/a)m (1.I)
Ln 0m -0

where the coefficients c are
m

Cm_ > (-)n ( a-) mc_+ (1.2)

n-0

and ( a 3 - a! is the familiar binomial coefficient, gives
n n! (a-n)!

-2(a-l)/3 m(.)
A. = p. c C0 g(na-m) (1.3)

L J
m

where

g(na-m) -a a m exp( -(as/3 + an)) (1.4)

C(A.)

The factors p. in (1.3) are the same as defined for the asymptotic

-p representation of the functions A. given in (20.a,b). Expanding
J

exp(-an) in a series then gives

g(n,a) - ( - k  I(a,k) , (1.5)
k k!

where the functions g(q,a) are the same as used by Rabenstein (1958), and
-K, a- 2-k
{K I(a,k)- da a exp (-a3/3) (1.6)

C(Aj)

4J
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The integral in (1.6) can be evaluated by making the change of variable,

y - a3/3. The contour corresponding to A. then transforms into one which
J

Sstarts at infinity with argument 2w + 2r(2-j), encircles the origin in the

counter-clockwise direction, and ends at infinity with argument 4w +

2n(2-j). Such contours correspond to Hankel's contour (Erdelyi, et.al.,

1953) so that (1.6) can be written in the form,

I. I.(a,k) - 2ni exp(ii(l-p)(7-2j)) / (3P r(p)) (1.7)

where p - (4-a-k)/3. Using (1.7), (1.5) and (1.3) then gives a series

expression for A. valid in the finite ;.-plane for all values of arg(p),

'.-.- 2 (a-l)/3pk

A"c -" ( -l) i a c m0 l(a-m,k) 17  (1.8)

Sk m k!

0-1 14

;'4
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Appendix If

In this appendix the functional form of the electric field of the mode

conversion solution B 3 ' is obtained in terms of the Airy function, Ai, and

. the driven-Airy function, Gi. Starting with equation (53) which gives B3P

in terms of the derivatives of the functions A.' with respect to o,
3

namely,

B 3  1 a.A 2' + a (e-,) + aA 3 '  , (11.1)
2iri

and using the m-0 term of the series representation of the functions A

given by Eq. (21) or (1.8), we obtain

aAj' - [a In p. - 2 In c]A.' + p. L ()k aI. ,k-I , (11.2)

3k-i (k-i)!

where

ail 1 ri(7-2j) + In 3 + 0(p)] 1 , (11.3)
a 3

with O(p) - d[in r(p)]/dp and where I is given by (22) or (1.7).
J

Defining the coefficients

C. --- PJ i (_)k (p)Ij(P) k-i , (11.4)
3 k-I (k-l)!

we can then obtain from (1I.I) using (51) and (11.2)

B ' - [2e'i 2 ra-A ' +A31]/3 + [C + e-i2 a-c I + C (11.5)
3 1 3 02 ei~ 1  C3]

Since Ij is inversely proportional to r(p) , where p - (3-k)/3 when a-I,

the factors Cj contain the term

T - l(p)/F(p) - r'(p)/F2 (p) (11.6)

To evaluate this term it is convenient to split the sum over k into three

separate sums where

in case 1: k - 3 ; - 0,1,2,... (II.7.a)

in case 2: k - 3n + 1 ; n - 1,2,3,... (II.7.b)
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N% and in case 3: k - 3m + 2 ; m - 1,2,3,... (II.7.c)

Using the various values of k in (11.7) then gives for

case 1: p Z - 1 T - (,)(Z-l)! n (11.8)

case 2: p 2/3 n ; T- ()n() [ Vb(2/3) + (,) ]/r(2/3) (11.9)
3 n

where ( a ) - r(a+n)/r(a) , (II.lO.a)

is Pochammer's symbol and we have defined a new symbol,
n" n-1l

£n( a] > 1

"j =0 j +a(I.1.)

and, 
case 

3:

p - 1/3 - m ; T - (-)m (2) [ 0(1/3) + (,) ]/,(1/3) (11.11)
3 m 3

The calculation of B ' is further facilitated by employing the following

notation

CO CO c n,
* f(z) = 3n z3n fn ; fi(z) ( n Jf, (11.12)

n0(3n). - - 3
nO"3 n n=O n-O

g(z) = z3m 1 l gm ; gi(z) Y (gm , (11.13)
-(3m+l)! 3m g, I 3m= ! m=O m-O

and h(z) - > 3(4-1 )  (L-l)! z R(1.14)
z (3(-)4

Using the series notation given in (11.12-14) and splitting Lhe sum over

k into sums over £,m, and n, the factors Cj can be written as

Cj - 2ri pj e1i(7-2j)/3 f h(I) - cI [0(2/3)f(-) + fi(")

3 - I+ c2  0 (1/3)g(-) + gi(n) ] ,(11.15)
c2 L /, 1

7J f

where

c 1/[3/ 3r(2/3)] c 2  1/[31/3 r(1/3)] . = ewi(7 2j)/3 n (11.16)

Using (11.15) together with the relation,

A.' - 27ri pj eii(7 2j)/3 [ c2 g( ) - c1 f( ) J , (11.17)
c2 J(I l f(7 1 .7

which can be obtained from the series representation of A by splitting

.75, the sum over k into separate sums over Z,m,n and noting r-(-£) - 0,

IV P

%0.1I r -I r r r o
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B can be written from (11.5) as
-- 3

B3
1 - f(-?7) ( 2ni c1 (2e'ii/3 + eri/ 3 ) + cc1 0(2/3)) + Eclfi(-7 )

3
-g(-7)(2ri c2 (2e7ri/ 3 + e-ni/ 3) + Ec2 b(1/3)) + Ec2fi(- 7 )

3
h(-j) , (11.18)

where T - 1 + e2ni/ 3 + e-2ri/3 . Notii.g that E - 0, then gives

B' -2i (1+e'i/ 3 )clf(-,7) - (1+ei/B)cIg(-) - h(-) , (11.19)3 2'r 1 2-7f~3

From the definition of the Airy functions (Antosiewicz, 1970)

Ai(x) - c1f(x) - c2g(x) , (II.20.a)

* and Gi(x) - 31/2 (C1 f(x) + c2g(x)] + ir-h(x) (II.20.b)

B can be simply written using (11.19) and (II.20.a,b) as
3

B3 ' -3 [ Gi(-n) + iAi(-n)] (11.21)

.1*
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FIGURES

Figure 1. An electrostatic whistler with frequency w, less than the

A A electron gyrofrequency 0, propagates to plasma resonance (i.e., the point

in the plasma where w-wpe) located at g--0. The gradient in the plasma

density is co-linear with the magnetic field.

Figure 2. The integration plane is cut by branch lines extending from

the branch points s=±ii 2 to infinity parallel to the real axis. The

contours defining the long wavelength solutions to (6) all start at the

_ point s - -i62. Examples of the contours for this class of solutions

which are related to the solutions of the reduced equation (8) are B0,

B 3 and B The contours are shown as solid lines when they lie in the

A. . principal Riemann sheet and dashed lines when they lie in an adjacent

sheet. The contour labeled A1 , which extends to infinity in sectors 2

and 3, is an example of a short wavelength solution.

r Figure 3. The argument range of-? over which the asymptotic

expressions for A. given in (20.a) and (20.b) are valid are shown for

each saddle point a - _i 2 . The function behavior at values of

arg(?.) integer multiples of n/3 is also indicated. Specifically, A

behaves isymptotically as a left to right propagating wave at

arg( ) - 0.

Figure 4. The principal argument ranges for the functions B. (j - 1,2,3 )

are shown in relation to those for A. Asymptotically, the functions B2

% J
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and B3 represent left to right propagating, long wavelength waves at

arg(;-) - 0 and n, respectively. The function B1 asymptotically contains

waves propagating in both directions for arg(?) - -w. The argument range

of the function B 0 is not restricted. At arg(g) - 0, B0 contains both

left and right propagating waves.

" .' Figure 5. a). The defining contour for the function B can be distorted
3

to coincide with the contours defining B1, A 3 and A1 . Cauchy's Theorem

can then be used to produce a relation among these solutions useful

L..w" for analytically continuing B3

b). A 2 can be related to B and a combination of B0 and B3 by

distorting the defining contour and applying Cauchy's Theorem. In

addition to pulling the contour in towards the point s - - the lower

half of the contour for A2 is pulled around the point s- ifi 2 in the

counter-clockwise direction and back towards s - -i8 2 after passing onto

the adjacent Riemann sheet.

I;,
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